Last edited 5 months ago

OCTOSPI internal peripheral


1. Article purpose

The purpose of this article is to:

  • briefly introduce the OCTOSPI peripheral and its main features,
  • indicate the peripheral instances assignment at boot time and their assignment at runtime (including whether instances can be allocated to secure contexts),
  • list the software frameworks and drivers managing the peripheral,
  • explain how to configure the peripheral.

2. Peripheral overview

The OCTOSPI peripheral interfaces the processor with serial NOR, serial NAND and HyperFlash flash memories.
It supports:

  • Single, Dual-, Quad- or Octal-SPI flash memories
  • HyperFlash memories
  • Dual data rate
  • Memory-mapped modes for read access.

Refer to the STM32 MPU reference manuals for the complete list of features, and to the software frameworks and drivers, introduced below, to see which features are implemented.

3. Peripheral usage

This chapter is applicable in the scope of the OpenSTLinux BSP running on the Arm® Cortex®-A processor(s), and the STM32CubeMPU Package running on the Arm® Cortex®-M processor.

3.1. Boot time assignment

3.1.1. On STM32MP21x lines More info.png

Click on How to.png to expand or collapse the legend...

Domain Peripheral Boot time allocation Comment How to.png
Instance Cortex-A35
secure
(ROM code)
Cortex-A35
secure
(TF-A BL2)
Cortex-A35
nonsecure
(U-Boot)
Mass storage OCTOSPI OCTOSPI1

3.1.2. On STM32MP23x lines More info.png

Click on How to.png to expand or collapse the legend...

Domain Peripheral Boot time allocation Comment How to.png
Instance Cortex-A35
secure
(ROM code)
Cortex-A35
secure
(TF-A BL2)
Cortex-A35
nonsecure
(U-Boot)
Mass storage OCTOSPI OCTOSPI1
OCTOSPI2

3.1.3. On STM32MP25x lines More info.png

Click on How to.png to expand or collapse the legend...

Domain Peripheral Boot time allocation Comment How to.png
Instance Cortex-A35
secure
(ROM code)
Cortex-A35
secure
(TF-A BL2)
Cortex-A35
nonsecure
(U-Boot)
Mass storage OCTOSPI OCTOSPI1
OCTOSPI2

3.2. Runtime assignment

3.2.1. On STM32MP21x lines More info.png

Click on How to.png to expand or collapse the legend...

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
nonsecure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
nonsecure
(STM32Cube)
Mass storage OCTOSPI OCTOSPI1 OP-TEE

3.2.2. On STM32MP23x lines More info.png

Click on How to.png to expand or collapse the legend...

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
nonsecure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
nonsecure
(STM32Cube)
Mass storage OCTOSPI OCTOSPI1 OP-TEE OP-TEE need to access OCTOSPI1 at boot time to set OSPIM mode
OCTOSPI2 OP-TEE OP-TEE need to access OCTOSPI2 at boot time to set OSPIM mode

3.2.3. On STM32MP25x lines More info.png

Click on How to.png to expand or collapse the legend...

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
nonsecure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
nonsecure
(STM32Cube)
Cortex-M0+
(STM32Cube)
Mass storage OCTOSPI OCTOSPI1 OP-TEE OP-TEE need to access OCTOSPI1 at boot time to set OSPIM mode
OCTOSPI2 OP-TEE OP-TEE need to access OCTOSPI2 at boot time to set OSPIM mode

4. Software frameworks and drivers

Below are listed the software frameworks and drivers managing the OCTOSPI peripheral for the embedded software components listed in the above tables.

5. How to assign and configure the peripheral

The peripheral assignment can be done via the STM32CubeMX graphical tool (and manually completed if needed).
This tool also helps to configure the peripheral by generating:

  • partial device trees (pin control and clock tree) for the OpenSTLinux software components,
  • HAL initialization code for the STM32CubeMPU Package.

The configuration is applied by the firmware running in the context in which the peripheral is assigned.

For Linux kernel configuration, refer to OCTOSPI device tree configuration.

6. References