Last edited one month ago

LPTIM internal peripheral

Applicable for STM32MP13x lines  STM32MP15x lines    STM32MP23x lines  STM32MP25x lines


1. Article purpose[edit | edit source]

The purpose of this article is to:

  • briefly introduce the LPTIM peripheral and its main features,
  • indicate the peripheral instances assignment at boot time and their assignment at runtime (including whether instances can be allocated to secure contexts),
  • list the software frameworks and drivers managing the peripheral,
  • explain how to configure the peripheral.

2. Peripheral overview[edit | edit source]

The LPTIM peripheral is a single channel low-power timer unit, that can continue to run even during low power modes when it selects a clock source that remains active in RCC.

The LPTIM peripheral is available in different configurations. Depending on the selected instance, it can act as PWM, quadrature encoder[1], external event counter or trigger source for other internal peripherals, like ADC, DAC and DFSDM (on STM32MP1 series) or MDF (on STM32MP2 series).

  • LPTIM on STM32MP1 series
LPTIM instances Independent Channels PWM External event counter
Trigger source
Quadrature encoder
LPTIM1, LPTIM2 1 Yes Yes Yes
LPTIM3 1 Yes Yes
LPTIM4, LPTIM5 1 Yes
  • LPTIM on STM32MP2 series
LPTIM instances Independent Channels PWM External event counter
Trigger source
Quadrature encoder
LPTIM1, LPTIM2 2 Yes Yes Yes
LPTIM3, LPTIM4 2 Yes Yes
LPTIM5 1 Yes Yes

Refer to the STM32 MPU reference manuals for the complete list of features, and to the software frameworks and drivers, introduced below, to see which features are implemented.

3. Peripheral usage[edit | edit source]

This chapter is applicable in the scope of the OpenSTLinux BSP running on the Arm® Cortex®-A processor(s), and the STM32CubeMPU Package running on the Arm® Cortex®-M processor.

3.1. Boot time assignment[edit | edit source]

3.1.1. On STM32MP13x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned to the given boot time context.
  • means that the peripheral is assigned by default to the given boot time context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given boot time context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32 MPU reference manuals.

Domain Peripheral Boot time allocation Comment How to.png
Instance Cortex-A7
secure
(ROM code)
Cortex-A7
secure
(TF-A BL2)
Cortex-A7
non-secure
(U-Boot)
Core/Timers LPTIM LPTIM1
LPTIM2
LPTIM3
LPTIM4
LPTIM5

3.1.2. On STM32MP15x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned to the given boot time context.
  • means that the peripheral is assigned by default to the given boot time context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given boot time context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32 MPU reference manuals.

Domain Peripheral Boot time allocation Comment How to.png
Instance Cortex-A7
secure
(ROM code)
Cortex-A7
secure
(TF-A BL2)
Cortex-A7
non-secure
(U-Boot)
Core/Timers LPTIM LPTIMx (x = 1 to 5) LPTIM are not used at boot time.

3.1.3. On STM32MP2 series[edit | edit source]

Click on How to.png to expand or collapse the legend...

  • means that the peripheral can be assigned to the given boot time context.
  • means that the peripheral is assigned by default to the given boot time context and that the peripheral is mandatory for the Yocto-based OpenSTLinux Embedded Software.
  • means that the peripheral can be assigned to the given boot time context, but this configuration is not supported in Yocto-based OpenSTLinux Embedded Software.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32 MPU reference manuals.

Domain Peripheral Boot time allocation Comment How to.png
Instance Cortex-A35
secure
(ROM code)
Cortex-A35
secure
(TF-A BL2)
Cortex-A35
nonsecure
(U-Boot)
Core/Timers LPTIM LPTIMx (x = 1 to 5)

3.2. Runtime assignment[edit | edit source]

3.2.1. On STM32MP13x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

STM32MP13 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP13 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Core/Timers LPTIM LPTIM1
LPTIM2 Assignment (single choice)
LPTIM3 Assignment (single choice)
LPTIM3 can be used for HSE monitoring.
LPTIM4
LPTIM5

3.2.2. On STM32MP15x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

STM32MP15 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the STM32 MPU Embedded Software distribution.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possiblities might be described in STM32MP15 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Cortex-M4

(STM32Cube)
Core/Timers LPTIM LPTIMx (x = 1 to 5) Assignment (single choice)

3.2.3. On STM32MP21x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

STM32MP21 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by Yocto-based OpenSTLinux Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the Yocto-based OpenSTLinux Embedded Software.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in Yocto-based OpenSTLinux Embedded Software.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP21 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
nonsecure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
nonsecure
(STM32Cube)
Core/Timers LPTIM LPTIM1 OP-TEE LPTIM1 can be used for HSE monitoring.
LPTIM2 OP-TEE
LPTIM3 OP-TEE LPTIMy (y = 3, 4, 5) can be used for scheduling in low power modes by Linux
LPTIM4 OP-TEE LPTIMy (y = 3, 4, 5) can be used for scheduling in low power modes by Linux
LPTIM5 OP-TEE LPTIMy (y = 3, 4, 5) can be used for scheduling in low power modes by Linux

3.2.4. On STM32MP23x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

STM32MP23 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by Yocto-based OpenSTLinux Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the Yocto-based OpenSTLinux Embedded Software.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in Yocto-based OpenSTLinux Embedded Software.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP23 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
nonsecure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
nonsecure
(STM32Cube)
Core/Timers LPTIM LPTIM1 OP-TEE LPTIM1 can be used for HSE monitoring.
LPTIM2 OP-TEE
LPTIM3 OP-TEE LPTIMy (y = 3, 4, 5) can be used for scheduling in low power modes by Linux
LPTIM4 OP-TEE LPTIMy (y = 3, 4, 5) can be used for scheduling in low power modes by Linux
LPTIM5 OP-TEE LPTIMy (y = 3, 4, 5) can be used for scheduling in low power modes by Linux

3.2.5. On STM32MP25x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

STM32MP25 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by Yocto-based OpenSTLinux Embedded Software:

  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the Yocto-based OpenSTLinux Embedded Software.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in Yocto-based OpenSTLinux Embedded Software.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP25 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
nonsecure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
nonsecure
(STM32Cube)
Cortex-M0+
(STM32Cube)
Core/Timers LPTIM LPTIM1 OP-TEE LPTIM1 can be used for HSE monitoring.
LPTIM2 OP-TEE
LPTIM3 OP-TEE LPTIMy (y = 3, 4, 5) can be used for scheduling in low power modes by Linux
LPTIM4 OP-TEE LPTIMy (y = 3, 4, 5) can be used for scheduling in low power modes by Linux
LPTIM5 OP-TEE LPTIMy (y = 3, 4, 5) can be used for scheduling in low power modes by Linux

4. Software frameworks and drivers[edit | edit source]

Below are listed the software frameworks and drivers managing the LPTIM peripheral for the embedded software components listed in the above tables.

5. How to assign and configure the peripheral[edit | edit source]

The peripheral assignment can be done via the STM32CubeMX graphical tool (and manually completed if needed).
This tool also helps to configure the peripheral:

  • partial device trees (pin control and clock tree) generation for the OpenSTLinux software components,
  • HAL initialization code generation for the STM32CubeMPU Package.

The configuration is applied by the firmware running in the context in which the peripheral is assigned.

For Linux kernel configuration, please refer to LPTIM device tree configuration and STM32 LPTIM Linux driver articles.

6. References[edit | edit source]