Last edited 2 months ago

GIC internal peripheral


1. Article purpose[edit | edit source]

The purpose of this article is to:

  • briefly introduce the GIC peripheral and its main features,
  • indicate the peripheral instances assignment at boot time and their assignment at runtime (including whether instances can be allocated to secure contexts),
  • list the software frameworks and drivers managing the peripheral,
  • explain how to configure the peripheral.

2. Peripheral overview[edit | edit source]

The GIC peripheral is the Arm® Cortex®-A7 interrupt controller.
It is consequently not accessible from the Arm® Cortex®-M4 core on STM32MP15x lines More info.png.

Refer to the STM32 MPU reference manuals for the complete list of features, and to the software frameworks and drivers, introduced below, to see which features are implemented.

3. Peripheral usage[edit | edit source]

This chapter is applicable in the scope of the OpenSTLinux BSP running on the Arm® Cortex®-A processor(s), and the STM32CubeMPU Package running on the Arm® Cortex®-M processor.

3.1. Boot time assignment[edit | edit source]

3.1.1. On STM32MP1 series[edit | edit source]

The GIC peripheral is not used at boot time.

3.1.2. On STM32MP2 series[edit | edit source]

STM32MP2 internal peripherals assignment table template

| rowspan="1" | Core/Interrupts | rowspan="1" | GIC | GIC | | | | |-

|}

3.2. Runtime assignment[edit | edit source]

3.2.1. On STM32MP13x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Core/Interrupts GIC GIC

3.2.2. On STM32MP15x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Cortex-M4

(STM32Cube)
Core/Interrupts GIC GIC

3.2.3. On STM32MP25x lines More info.png[edit | edit source]

STM32MP2 internal peripherals assignment table template

| rowspan="1" | Core/Interrupts | rowspan="1" | GIC | GIC | OP-TEE
TF-A BL31 | | | | | |-

|}

4. Software frameworks and drivers[edit | edit source]

Below are listed the software frameworks and drivers managing the GIC peripheral for the embedded software components listed in the above tables.

5. How to assign and configure the peripheral[edit | edit source]

The peripheral assignment can be done via the STM32CubeMX graphical tool (and manually completed if needed).
This tool also helps to configure the peripheral:

  • partial device trees (pin control and clock tree) generation for the OpenSTLinux software components,
  • HAL initialization code generation for the STM32CubeMPU Package.

The configuration is applied by the firmware running in the context in which the peripheral is assigned.