Last edited one week ago

STM32MP2 internal peripherals assignment table template

Applicable for STM32MP23x lines, STM32MP25x lines

1. Boot time assignment table for STM32MP2 series[edit | edit source]

1.1. Cortex-A35 boot[edit | edit source]

Click on How to.png to expand or collapse the legend...

Check boxes illustrate the possible peripheral allocations supported by OpenSTLinux BSP:

  • means that the peripheral can be assigned to the given boot time context, but this configuration is not supported in OpenSTLinux BSP.
  • means that the peripheral can be assigned to the given boot time context.
  • means that the peripheral is assigned by default to the given boot time context and that the peripheral is mandatory for the OpenSTLinux BSP.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32 MPU reference manuals.

Domain Peripheral Boot time allocation Comment How to.png
Instance Cortex-A35
secure
(ROM code)
Cortex-A35
secure
(TF-A BL2)
Cortex-A35
nonsecure
(U-Boot)


Feature Boot time allocation Info.png Comment
Cortex-A35
secure
(ROM code)
Cortex-A35
secure
(TF-A BL2)
Cortex-A35
nonsecure
(U-Boot)

1.2. Cortex-M33 boot[edit | edit source]


Click on How to.png to expand or collapse the legend...

Check boxes illustrate the possible peripheral allocations supported by OpenSTLinux BSP:

  • means that the peripheral can be assigned to the given boot time context, but this configuration is not supported in OpenSTLinux BSP.
  • means that the peripheral can be assigned to the given boot time context.
  • means that the peripheral is assigned by default to the given boot time context and that the peripheral is mandatory for the OpenSTLinux BSP.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32 MPU reference manuals.

Domain Peripheral Boot time allocation Comment How to.png
Instance Cortex-A35
secure
(ROM code)
Cortex-A35
secure
(TF-A BL2)
Cortex-A35
nonsecure
(U-Boot)
Cortex-M33
secure
(MCUboot)


Feature Boot time allocation Info.png Comment
Cortex-A35
secure
(ROM code)
Cortex-A35
secure
(TF-A BL2)
Cortex-A35
nonsecure
(U-Boot)
Cortex-M33
secure
(MCUboot)

2. Runtime assignment table for STM32MP21x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

STM32MP21 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by OpenSTLinux BSP:

  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in OpenSTLinux BSP.
  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the OpenSTLinux BSP.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP21 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
nonsecure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
nonsecure
(STM32Cube)


Feature Runtime allocation Info.png Comment
Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
nonsecure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
nonsecure
(STM32Cube)

3. Runtime assignment table for STM32MP23x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

STM32MP23 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by OpenSTLinux BSP:

  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in OpenSTLinux BSP.
  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the OpenSTLinux BSP.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP23 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
nonsecure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
nonsecure
(STM32Cube)


Feature Runtime allocation Info.png Comment
Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
nonsecure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
nonsecure
(STM32Cube)

4. Runtime assignment table for STM32MP25x lines More info.png[edit | edit source]

Click on How to.png to expand or collapse the legend...

STM32MP25 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by OpenSTLinux BSP:

  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in OpenSTLinux BSP.
  • means that the peripheral can be assigned to the given runtime context.
  • means that the peripheral is assigned by default to the given runtime context and that the peripheral is mandatory for the OpenSTLinux BSP.
  • is used for system peripherals that cannot be unchecked because they are hardware connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possibilities might be described in STM32MP25 reference manuals.

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
nonsecure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
nonsecure
(STM32Cube)
Cortex-M0+
(STM32Cube)


Feature Runtime allocation Info.png Comment
Cortex-A35
secure
(OP-TEE /
TF-A BL31)
Cortex-A35
nonsecure
(Linux)
Cortex-M33
secure
(TF-M)
Cortex-M33
nonsecure
(STM32Cube)
Cortex-M0+
(STM32Cube)