Click here for Bluetooth® LE overview.
Click here for an introduction to Bluetooth® LE with STM32.
1. Introduction
STM32CubeMX tool is a graphical tool that helps you generate an application targeting the STMicroelectronics MCU of your choice, with initialization code based on the configuration you specify. In the tools interface, you can select your STMicroelectronics MCU, configure pins, clocks, peripherals, and middleware, and generate the code project based on your setup.
This wiki page demonstrates how to generate a Bluetooth® LE server application for an STM32WB0 series MCU using STM32CubeMX.
It is illustrated with examples using the NUCLEO-WB09KE Nucleo board, which features the STM32WB09KE microcontroller.
2. Build a Bluetooth® LE application on STM32WB0 series with STM32CubeMX
The STM32WB0 series Nucleo board, programmed with the application generated by STM32CubeMX, can send data to a smartphone (using the ST BLE ToolBox application or ST BLE Sensor application), and receive commands from it through Bluetooth® LE.
A generic attribute (GATT) server application is used to expose some user services. Note that the generic access profile (GAP) and GATT services are automatically added to the list of user services. For our peer-to-peer (P2P) server application, we use two user services:
- The first service exposes two characteristics.
- The second service exposes three characteristics.
The first service (P2P_Server) looks like a P2P server (STM proprietary) with two characteristics:
- Characteristic 1 has write property.
- Characteristic 2 has notify property.
Writing to characteristic 1 toggles the blue LED.
Pressing button 1 on the Nucleo board sends data to the phone.
The following steps are recommended to build this application example:
Service and characteristic configurations are given in the following table:
Service Long Name | P2P_Server | |
---|---|---|
Service Short Name | P2P_Server | |
UUID Type | 128 bits | |
UUID | 0x8FE5B3D52E7F4A982A487ACC40FE0000 | |
Characteristic Long Name | LED_C | SWITCH_C |
Characteristic Short Name | LED_C | SWITCH_C |
UUID Type | 128 bits | 128 bits |
UUID | 0x19ED82AEED214C9D4145228E41FE0000 | 0x19ED82AEED214C9D4145228E41FE0000 |
Char Properties | Read + Write w/o response | Notify |
Char Permissions | None | None |
Char GATT Events | GATT_NOTIFY_ATTRIBUTE_WRITE|
GATT_NOTIFY_WRITE_REQ_AND_WAIT_FOR_APPL_RESP| GATT_NOTIFY_READ_REQ_AND_WAIT_FOR_APPL_RESP |
GATT_NOTIFY_ATTRIBUTE_WRITE|
GATT_NOTIFY_WRITE_REQ_AND_WAIT_FOR_APPL_RESP| GATT_NOTIFY_READ_REQ_AND_WAIT_FOR_APPL_RESP |
3. Tools
3.1. Software tools
To make and use this application project, you need the following software tools:
- STM32CubeMX[1] software
- STM32CubeWB0 MCU Package[2]
- IDE: STM32CubeIDE[3] or IAR Embedded Workbench®[4]
- Your preferred serial terminal (such as Tera Term)
- ST BLE ToolBox smartphone application
- ST BLE Sensor smartphone application
The following demonstration is based on:
- STM32CubeMX v6.13.0
- STM32CubeWB0 MCU Package v1.1.0
3.2. Hardware tools
You also need an STM32WB0 series Nucleo board and a USB Type-C® to Type-A cable.
4. STM32CubeMX initialization for STM32WB0 series Nucleo board
With the STM32CubeMX software tool, it is possible to start your project at different levels: directly from the chip, from boards with the hardware support already configured, or directly from an embedded application developed by STMicroelectronics.
In this example, we start with the STM32WB09KEVx chip to detail all the configuration steps to enable Bluetooth® LE and create an application. In this example, it is a P2P server application.
STM32WB0 series application design with STM32CubeMX for a P2P server application (firmware stack version must be updated to 5.4) |
---|
4.1. STM32CubeMX initial setup
Open STM32CubeMX and start a new project by clicking on the Access to MCU selector button:
Select the correct MCU and start the new project:
4.2. Pinout and peripheral configuration
To configure the system, enable all the required system resources and peripherals by clicking on the A->Z tab to display all peripherals.
STM32WB0 Bluetooth® LE middleware STM32_BLE is reachable once the following system resources and peripherals are set to "enabled".
Mandatory:
- RCC: HSE and LSE on crystal/ceramic resonator
- RNG: activated
- PKA: activated
- RADIO_TIMER: activated
- RADIO: activated
- NVIC: verify NVIC settings
- USART1: set mode to asynchronous
RCC | Reset and clock control manages the different kinds of reset and generates all clocks for the bus and peripherals. | |
RNG | The random number generator (RNG) provides the application with full entropy outputs as 32-bit samples. It is necessary to activate it, because the link layer regularly requests RNG. | |
PKA | The public key accelerator (PKA) is intended for the computation of cryptographic public key primitives, specifically those related to RSA, Diffie-Hellmann or ECC (elliptic curve cryptography) over GF(p) (Galois fields). | |
RADIO_TIMER | The timer used to wake up the device during low-power mode phases. | |
RADIO | The radio peripheral manages the Bluetooth® LE protocol with hardware add on to support some new Bluetooth® specification features, and controls the RF analog module. | |
NVIC | All interrupts, including the core exceptions, are managed by the nested vectored interrupt controller (NVIC). | |
USART1 | USART1 is enabled to allow the display of traces on a terminal. | |
STM32_BLE | The STM32_BLE is mandatory for a Bluetooth® LE project. Middleware developed within the STM32WB0 framework to support Bluetooth® LE 5.4. |
4.2.1. RCC
Reset and Clock Control (RCC) manages the different kinds of reset and generates all clocks for the bus and peripherals.
4.2.2. RNG
The Random Number Generator (RNG) provides the application with full entropy outputs as 32-bit samples. It is necessary to activate it, because the link layer regularly requests RNG.
4.2.3. PKA
The public key accelerator (PKA) is intended for the computation of cryptographic public key primitives, specifically those related to RSA, Diffie-Hellmann or ECC (elliptic curve cryptography) over GF(p) (Galois fields). To achieve high performance at a reasonable cost, these operations are executed in the Montgomery domain. All needed computations are performed within the accelerator, so no further hardware/software elaboration is needed to process the inputs or the outputs.
4.2.4. RADIO_TIMER
The RADIO_TIMER is used to wake up the device during low-power mode phases. It allows the application to program an event can be related to a wake-up of the device, a user timeout or a preconfigured radio transaction to be triggered.
4.2.5. RADIO
The RADIO peripheral embedded in the STM32WB09xE product, radio controller MR_BLE, manages the LE protocol with hardware add on to support some new Bluetooth® specification features, and controls the RF analog module.
4.2.6. USART1
USART1 is enabled to allow the display of traces on a terminal.
4.2.7. NVIC
The Nested Vector Interrupt Controller (NVIC) and the processor core interface are closely coupled, enabling low-latency interrupt processing and efficient processing of late-arriving interrupts. The NVIC manages all interrupts including core exceptions.
4.3. Clock configuration
In the Clock Configuration tab, run the automatic clock issue solver (if requested).
The following configuration is defined for the initial startup phase. At runtime, the clocks are managed dynamically by the System Clock Manager (SCM) module.
Configure the Clock as the following figure:
5. STM32_BLE Bluetooth® LE GAP/GATT Custom application configuration
Now, we can start configuring and defining the STM32_BLE Middleware application.
- The Bluetooth® LE Peripheral Custom Template GATT Server Application can be defined:
- on STM32WB0.
- with STM32CubeMX (starting from version 6.13.0).
- GAP peripheral: advertising configuration
- GATT server configuration:
- 25 services maximum.
- 25 characteristics maximum per service.
- ACI commands:
- AN6142: STM32WB0 Bluetooth® LE wireless interface[5]
- AN6142: STM32WB0 Bluetooth® LE wireless interface[5]
5.1. Enabling Bluetooth® LE
To configure your application:
5.2. Application configuration
All application configuration topics are reachable by:
5.2.1. Application parameters
Pairing is done to support a secure connection method.
All parameters defined in this chapter are located in the app_conf.h file.
5.2.2. BLE stack
5.2.3. Modular Options
5.2.4. Low Power
5.2.5. Traces
5.2.6. Debug
5.3. Advertising configuration
This array is defined in the app_ble.c file with the following code:
static const char a_GapDeviceName[] = { 'P', 'e', 'e', 'r', ' ', 't', 'o', ' ', 'P', 'e', 'e', 'r', ' ', 'S', 'e', 'r', 'v', 'e', 'r' }; /* Gap Device Name */
In the generated code, these parameters are defined in the app_conf.h file:
#define ADV_INTERVAL_MIN (0x0080)
#define ADV_INTERVAL_MAX (0x00A0)
#define ADV_LP_INTERVAL_MIN (0x0640)
#define ADV_LP_INTERVAL_MAX (0x0FA0)
#define ADV_TYPE HCI_ADV_EVENT_PROP_LEGACY|HCI_ADV_EVENT_PROP_CONNECTABLE|HCI_ADV_EVENT_PROP_SCANNABLE)
#define ADV_FILTER HCI_ADV_FILTER_NONE
Open Advertising elements, included in the advertising packet payload, and:
The generated code corresponding to the advertising packet elements is located in the app_ble.c file.
/**
* Advertising Data
*/
uint8_t a_AdvData[] =
{
2, AD_TYPE_FLAGS, FLAG_BIT_LE_GENERAL_DISCOVERABLE_MODE|FLAG_BIT_BR_EDR_NOT_SUPPORTED,
8, AD_TYPE_COMPLETE_LOCAL_NAME, 'p', '2', 'p', 'S', '_', 'X', 'X', /* Complete name */
15, AD_TYPE_MANUFACTURER_SPECIFIC_DATA, 0x30, 0x00, 0x00 /* */, 0x00 /* */, 0x00 /* */, 0x00 /* */, 0x00 /* */, 0x00 /* */, 0x00 /* */, 0x00 /* */, 0x00 /* */, 0x00 /* */, 0x00 /* */, 0x00 /* */,
};
In this example, we configure 2 advertising elements (advertising packet structure length = 25 bytes):
- Complete local name
- Manufacturer-specific data
The advertising information is represented by the advertising data elements, which are standardized on the Bluetooth SIG.
The manufacturer-specific data are updated at runtime (specific function in the app_ble.c file).
5.4. Service and characteristic definition
All created services and characteristics are managed in an associated xxx.c file (one file per service; xxx = service short name, defined in the SERVICEx panel). Each service and characteristic is added with the XXX_Init(void) function (XXX = service short name (capitalized), defined in the SERVICEx panel), using :
- aci_gatt_srv_add_service(…) for services and characteristics.
5.4.1. BLE Applications and Services tab
To start defining the Bluetooth® LE application:
5.4.2. Service definition
Each service has to be configured in a dedicated tab (named SERVICE1 to SERVICE25).
- Up to 25 characteristics per service
- UUID type can be defined as 16 or 128 bits, full or reduced
- UUID definition
- Type value is primary or secondary service
Once the number of services has been defined (in this example, we defined only one service with two characteristics), update the service information:
5.4.3. Characteristic definition
For each characteristic, the following parameters must be defined:
- General
- Properties
- Permissions
- GATT events
In our example, the service we defined has the following 2 characteristics:
Characteristic 1 | Characteristic 2 | ||||
---|---|---|---|---|---|
UUID type | 128 bits UUID (0x02) | 128 bits UUID (0x02) | |||
UUID 128 Input type | Full | Full | |||
UUID | 19 ED 82 AE ED 21 4C 9D 41 45 22 8E 41 FE 00 00 | 19 ED 82 AE ED 21 4C 9D 41 45 22 8E 41 FE 00 00 | |||
Characteristic type | Buffered | Buffered | |||
Characteristic long name | LED_C | Switch_C | |||
Characteristic Short Name | LED_C | SWITCH_C | |||
Value length | 2 | 2 | |||
Length characteristic | Constant | Connstant | |||
Encryption key size | 0x10 | 0x10 | |||
Char Properties | READ | WRITE_WITHOUT_RESP | NOTIFY | ||
GATT events | GATT_NOTIFY_ATTRIBUTE_WRITE
GATT_NOTIFY_WRITE_REQ_AND_WAIT_FOR_APPL_RESP GATT_NOTIFY_READ_REQ_AND_WAIT_FOR_APPL_RESP |
GATT_NOTIFY_ATTRIBUTE_WRITE
GATT_NOTIFY_WRITE_REQ_AND_WAIT_FOR_APPL_RESP GATT_NOTIFY_READ_REQ_AND_WAIT_FOR_APPL_RESP |
These characteristics have to be defined as shown in the image below:
5.5. Platform settings
To change the BSP settings:
6. Project configuration
The Project Manager tab, which is used for the configuration of the project, has three main sections:
- Project
- Code Generator
- Advanced Settings
To configure your project, proceed as follows:
Depending on your work organization, you can choose not to use the default firmware location. In this case:
The Code Generator section lets you manage files, packages, and embedded software packs.
In the Advanced Settings section, rearrange the order of the functions:
7. P2P server notification and write management
To use the P2P server notification and write characteristics, several elements must be configured:
- The user button and the related interrupt, to notify the P2P client.
- The blue LED, to receive a P2P client write operation.
- The custom application code, to manage B1 and write operations on the P2P server service.
7.1. User button and LED pinout
Nucleo board pinout configuration:
- Blue LED: PB0
- Red LED: PB2
- Green LED: PB4
Switch (user button) pinout configuration:
- B1: PA0
- B2: PB5
- B3: PB14
When used:
- The switch pins are declared as GPIO_INPUT.
- The LED pins are declared as GPIO_OUTPUT.
7.2. LED and button setup
To configure the buttons and LEDs in this example, the BSP files are used in the project at the end of this wikipage.
8. Code generation
When you configure your application, you can use STM32CubeMX to generate your code:
9. Code modification: user sections
Once your button and LED GPIOs have been configured, generate your project by following the steps described in the Code Generation chapter.
The generated source code contains several sections called user sections, where users can add custom application code parts.
These sections are not erased or modified during the project regeneration by STM32CubeMX.
To manage notify and write operations on the P2P server service, some code parts must be added to the user sections of the following files and their respective header files:
- app_conf.h:
In app_conf.h, define the tasks for buttons, notifications, and advertising by adding code to the CFG_Task_Id_t user code section:
/* USER CODE BEGIN CFG_Task_Id_t */
TASK_BUTTON_1,
TASK_BUTTON_2,
TASK_BUTTON_3,
CFG_TASK_ADV_CANCEL_ID,
CFG_TASK_SEND_NOTIF_ID,
/* USER CODE END CFG_Task_Id_t */
You must also update the user code defines to support the LEDs, buttons, and debug:
/* USER CODE BEGIN Defines */
/**
* User interaction
* When CFG_LED_SUPPORTED is set, LEDS are activated if requested
* When CFG_BUTTON_SUPPORTED is set, the push-buttons are activated if requested
*/
#define CFG_LED_SUPPORTED (1)
#define CFG_BUTTON_SUPPORTED (1)
/**
* If CFG_FULL_LOW_POWER is requested, make sure LED and debugger are disabled
*/
#if (CFG_FULL_LOW_POWER == 1)
#undef CFG_LED_SUPPORTED
#define CFG_LED_SUPPORTED (0)
#endif /* CFG_FULL_LOW_POWER */
/* USER CODE END Defines */
- stm32wb0x_it.c:
/* USER CODE BEGIN 1 */
void GPIOA_IRQHandler(void)
{
BSP_PB_IRQHandler(B1_GPIO_PORT, B1_PIN);
}
void GPIOB_IRQHandler(void)
{
BSP_PB_IRQHandler(B2_GPIO_PORT, B2_PIN);
BSP_PB_IRQHandler(B3_GPIO_PORT, B3_PIN);
}
/* USER CODE END 1 */
- app_entry.h:
/* USER CODE BEGIN EF */
#if (CFG_BUTTON_SUPPORTED == 1)
uint8_t APPE_ButtonIsLongPressed(uint16_t btnIdx);
void APPE_Button1Action(void);
void APPE_Button2Action(void);
void APPE_Button3Action(void);
#endif
/* USER CODE END EF */
- app_entry.c:
/* USER CODE BEGIN PTD */
#if (CFG_BUTTON_SUPPORTED == 1)
typedef struct
{
Button_TypeDef button;
VTIMER_HandleType longTimerId;
uint8_t longPressed;
} ButtonDesc_t;
#endif /* (CFG_BUTTON_SUPPORTED == 1) */
/* USER CODE END PTD */
/* USER CODE BEGIN PD */
#if (CFG_BUTTON_SUPPORTED == 1)
#define BUTTON_LONG_PRESS_THRESHOLD_MS (500u)
#define BUTTON_NB_MAX (B3 + 1u)
#endif
/* USER CODE END PD */
/* USER CODE BEGIN PV */
#if (CFG_BUTTON_SUPPORTED == 1)
/* Button management */
static ButtonDesc_t buttonDesc[BUTTON_NB_MAX];
#endif
/* USER CODE BEGIN PFP */
#if (CFG_LED_SUPPORTED == 1)
static void Led_Init(void);
#endif
#if (CFG_BUTTON_SUPPORTED == 1)
static void Button_Init(void);
static void Button_TriggerActions(void *arg);
#endif
/* USER CODE END PFP */
/* USER CODE BEGIN FD */
#if (CFG_BUTTON_SUPPORTED == 1)
/**
* @brief Indicate if the selected button was pressedn during a 'long time' or not.
*
* @param btnIdx Button to test, listed in enum Button_TypeDef
* @return '1' if pressed during a 'long time', else '0'.
*/
uint8_t APPE_ButtonIsLongPressed(uint16_t btnIdx)
{
uint8_t pressStatus;
if ( btnIdx < BUTTON_NB_MAX )
{
pressStatus = buttonDesc[btnIdx].longPressed;
}
else
{
pressStatus = 0;
}
return pressStatus;
}
/**
* @brief Action of button 1 when pressed, to be implemented by user.
* @param None
* @retval None
*/
__WEAK void APPE_Button1Action(void)
{
}
/**
* @brief Action of button 2 when pressed, to be implemented by user.
* @param None
* @retval None
*/
__WEAK void APPE_Button2Action(void)
{
}
/**
* @brief Action of button 3 when pressed, to be implemented by user.
* @param None
* @retval None
*/
__WEAK void APPE_Button3Action(void)
{
}
#endif
/* USER CODE END FD */
/* USER CODE BEGIN PFP */
#if (CFG_LED_SUPPORTED == 1)
static void Led_Init(void);
#endif
#if (CFG_BUTTON_SUPPORTED == 1)
static void Button_Init(void);
static void Button_TriggerActions(void *arg);
#endif
/* USER CODE END PFP */
/* USER CODE BEGIN FD_LOCAL_FUNCTIONS */
#if (CFG_LED_SUPPORTED == 1)
static void Led_Init( void )
{
/* Leds Initialization */
BSP_LED_Init(LED_BLUE);
BSP_LED_Init(LED_GREEN);
BSP_LED_Init(LED_RED);
BSP_LED_On(LED_GREEN);
return;
}
#endif
#if (CFG_BUTTON_SUPPORTED == 1)
static void Button_Init( void )
{
/* Button Initialization */
buttonDesc[B1].button = B1;
buttonDesc[B2].button = B2;
buttonDesc[B3].button = B3;
BSP_PB_Init(B1, BUTTON_MODE_EXTI);
BSP_PB_Init(B2, BUTTON_MODE_EXTI);
BSP_PB_Init(B3, BUTTON_MODE_EXTI);
#if (CFG_LPM_SUPPORTED == 1)
HAL_PWR_EnableWakeUpPin(PWR_WAKEUP_PA0, PWR_WUP_FALLEDG);
HAL_PWR_EnableWakeUpPin(PWR_WAKEUP_PB5, PWR_WUP_FALLEDG);
#if defined(STM32WB06) || defined(STM32WB07)
HAL_PWR_EnableWakeUpPin(PWR_WAKEUP_PB9, PWR_WUP_FALLEDG);
#else
HAL_PWR_EnableWakeUpPin(PWR_WAKEUP_PB14, PWR_WUP_FALLEDG);
#endif
#endif
/* Register tasks associated to buttons */
UTIL_SEQ_RegTask(1U << TASK_BUTTON_1, UTIL_SEQ_RFU, APPE_Button1Action);
UTIL_SEQ_RegTask(1U << TASK_BUTTON_2, UTIL_SEQ_RFU, APPE_Button2Action);
UTIL_SEQ_RegTask(1U << TASK_BUTTON_3, UTIL_SEQ_RFU, APPE_Button3Action);
/* Create timers to detect button long press (one for each button) */
Button_TypeDef buttonIndex;
for ( buttonIndex = B1; buttonIndex < BUTTON_NB_MAX; buttonIndex++ )
{
buttonDesc[buttonIndex].longTimerId.callback = Button_TriggerActions;
buttonDesc[buttonIndex].longTimerId.userData = &buttonDesc[buttonIndex];
}
return;
}
static void Button_TriggerActions(void *arg)
{
ButtonDesc_t *p_buttonDesc = ((VTIMER_HandleType *)arg)->userData;
p_buttonDesc->longPressed = BSP_PB_GetState(p_buttonDesc->button);
APP_DBG_MSG("Button %d pressed\n", (p_buttonDesc->button + 1));
switch (p_buttonDesc->button)
{
case B1:
UTIL_SEQ_SetTask(1U << TASK_BUTTON_1, CFG_SEQ_PRIO_0);
break;
case B2:
UTIL_SEQ_SetTask(1U << TASK_BUTTON_2, CFG_SEQ_PRIO_0);
break;
case B3:
UTIL_SEQ_SetTask(1U << TASK_BUTTON_3, CFG_SEQ_PRIO_0);
break;
default:
break;
}
return;
}
#endif
/* USER CODE END FD_LOCAL_FUNCTIONS */
/* USER CODE BEGIN FD_WRAP_FUNCTIONS */
#if (CFG_BUTTON_SUPPORTED == 1)
void BSP_PB_Callback(Button_TypeDef Button)
{
buttonDesc[Button].longPressed = 0;
HAL_RADIO_TIMER_StartVirtualTimer(&buttonDesc[Button].longTimerId, BUTTON_LONG_PRESS_THRESHOLD_MS);
return;
}
#if (CFG_LPM_SUPPORTED == 1)
void HAL_PWR_WKUPx_Callback(uint32_t wakeupIOs)
{
if (wakeupIOs & PWR_WAKEUP_PA0)
{
BSP_PB_Callback(B1);
}
if (wakeupIOs & PWR_WAKEUP_PB5)
{
BSP_PB_Callback(B2);
}
#if defined(STM32WB06) || defined(STM32WB07)
if (wakeupIOs & PWR_WAKEUP_PB9)
{
BSP_PB_Callback(B3);
}
#else
if (wakeupIOs & PWR_WAKEUP_PB14)
{
BSP_PB_Callback(B3);
}
#endif
}
#endif
void HAL_GPIO_EXTI_Callback(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin)
{
if (GPIO_Pin == B1_PIN)
{
BSP_PB_Callback(B1);
}
else if (GPIO_Pin == B2_PIN)
{
BSP_PB_Callback(B2);
}
else if (GPIO_Pin == B3_PIN)
{
BSP_PB_Callback(B3);
}
return;
}
#endif /* (CFG_BUTTON_SUPPORTED == 1) */
/* USER CODE END FD_WRAP_FUNCTIONS */
- app_ble.h:
/* USER CODE BEGIN EC */
/**
* ST Manufacturer ID (2 bytes: least significant and most significant bytes).
*/
#define ST_MANUF_ID_LSB 0x30
#define ST_MANUF_ID_MSB 0x00
/**
* BlueSTSDK Version
*/
#define BLUESTSDK_V1 0x01
#define BLUESTSDK_V2 0x02
/**
* BOARD ID
*/
#define BOARD_ID_NUCLEO_WB0 0x8D
/**
* FIRMWARE ID
*/
#define FW_ID_P2P_SERVER 0x83
#define FW_ID_P2P_ROUTER 0x85
#define FW_ID_COC_PERIPH 0x87
#define FW_ID_DT_SERVER 0x88
#define FW_ID_HEART_RATE 0x89
#define FW_ID_HEALTH_THERMO 0x8A
/* USER CODE END EC */
- app_ble.c:
/* USER CODE BEGIN PD */
#define LED_ON_TIMEOUT_MS (5)
#define ADV_TIMEOUT_MS (60 * 1000)
/* USER CODE END PD */
/* USER CODE BEGIN PFP */
static void Adv_Cancel_Req(void *arg);
static void Adv_Cancel(void);
static void Switch_OFF_GPIO(void *arg);
static void fill_advData(uint8_t *p_adv_data, uint8_t tab_size, const uint8_t*p_bd_addr);
/* USER CODE END PFP */
/* USER CODE BEGIN APP_BLE_Init_4 */
UTIL_SEQ_RegTask(1<<CFG_TASK_ADV_CANCEL_ID, UTIL_SEQ_RFU, Adv_Cancel);
/* Create timer to handle the Advertising Stop */
bleAppContext.Advertising_mgr_timer_Id.callback = Adv_Cancel_Req;
/* Create timer to handle the Led Switch OFF */
bleAppContext.SwitchOffGPIO_timer_Id.callback = Switch_OFF_GPIO;
/* USER CODE END APP_BLE_Init_4 */
/* USER CODE BEGIN APP_BLE_Init_3 */
ret = aci_hal_set_radio_activity_mask(0x0006);
if (ret != BLE_STATUS_SUCCESS)
{
APP_DBG_MSG(" Fail : aci_hal_set_radio_activity_mask command, result: 0x%2X\n", ret);
}
else
{
APP_DBG_MSG(" Success: aci_hal_set_radio_activity_mask command\n\r");
}
/* Start to Advertise to accept a connection */
APP_BLE_Procedure_Gap_Peripheral(PROC_GAP_PERIPH_ADVERTISE_START_FAST);
/* Start a timer to stop advertising after a while */
HAL_RADIO_TIMER_StartVirtualTimer(&bleAppContext.Advertising_mgr_timer_Id, ADV_TIMEOUT_MS);
/* USER CODE END APP_BLE_Init_3 */
/* USER CODE BEGIN APP_BLE_Init_2 */
bleAppContext.connIntervalFlag = 0;
/* USER CODE END APP_BLE_Init_2 */
/* USER CODE BEGIN EVT_DISCONN_COMPLETE */
APP_BLE_Procedure_Gap_Peripheral(PROC_GAP_PERIPH_ADVERTISE_START_FAST);
HAL_RADIO_TIMER_StartVirtualTimer(&bleAppContext.Advertising_mgr_timer_Id, ADV_TIMEOUT_MS);
/* USER CODE END EVT_DISCONN_COMPLETE */
/* USER CODE BEGIN HCI_EVT_LE_CONN_COMPLETE */
/* The connection is done, there is no need anymore to schedule the LP ADV */
HAL_RADIO_TIMER_StopVirtualTimer(&(bleAppContext.Advertising_mgr_timer_Id));
/* USER CODE END HCI_EVT_LE_CONN_COMPLETE */
/* USER CODE BEGIN HCI_EVT_LE_CONN_COMPLETE */
/* The connection is done, there is no need anymore to schedule the LP ADV */
HAL_RADIO_TIMER_StopVirtualTimer(&(bleAppContext.Advertising_mgr_timer_Id));
/* USER CODE END HCI_EVT_LE_CONN_COMPLETE */
/* USER CODE BEGIN RADIO_ACTIVITY_EVENT*/
BSP_LED_On(LED_GREEN);
HAL_RADIO_TIMER_StopVirtualTimer(&bleAppContext.SwitchOffGPIO_timer_Id);
HAL_RADIO_TIMER_StartVirtualTimer(&bleAppContext.SwitchOffGPIO_timer_Id, LED_ON_TIMEOUT_MS);
/* USER CODE END RADIO_ACTIVITY_EVENT*/
/* USER CODE BEGIN CONN_PARAM_UPDATE */
if (bleAppContext.connIntervalFlag != 0)
{
bleAppContext.connIntervalFlag = 0;
paramA = CONN_INT_MS(50);
paramB = CONN_INT_MS(50);
}
else
{
bleAppContext.connIntervalFlag = 1;
paramA = CONN_INT_MS(1000);
paramB = CONN_INT_MS(1000);
}
/* USER CODE END CONN_PARAM_UPDATE */
/* USER CODE BEGIN Ble_Hci_Gap_Gatt_Init_1*/
fill_advData(&a_AdvData[0], sizeof(a_AdvData), bd_address);
/* USER CODE END Ble_Hci_Gap_Gatt_Init_1*/
/* USER CODE BEGIN FD_LOCAL_FUNCTION */
static void Adv_Cancel_Req(void *arg)
{
APP_DBG_MSG("Adv_Cancel_Req\n");
UTIL_SEQ_SetTask(1 << CFG_TASK_ADV_CANCEL_ID, CFG_SEQ_PRIO_0);
return;
}
static void Switch_OFF_GPIO(void *arg)
{
BSP_LED_Off(LED_GREEN);
return;
}
static void Adv_Cancel(void)
{
BSP_LED_Off(LED_GREEN);
APP_BLE_Procedure_Gap_Peripheral(PROC_GAP_PERIPH_ADVERTISE_STOP);
bleAppContext.Device_Connection_Status = APP_BLE_IDLE;
return;
}
static void fill_advData(uint8_t *p_adv_data, uint8_t tab_size, const uint8_t* p_bd_addr)
{
uint16_t i =0;
uint8_t bd_addr_1, bd_addr_0;
uint8_t ad_length, ad_type;
while(i < tab_size)
{
ad_length = p_adv_data[i];
ad_type = p_adv_data[i + 1];
switch (ad_type)
{
case AD_TYPE_FLAGS:
break;
case AD_TYPE_TX_POWER_LEVEL:
break;
case AD_TYPE_COMPLETE_LOCAL_NAME:
{
if((p_adv_data[i + ad_length] == 'X') && (p_adv_data[i + ad_length - 1] == 'X'))
{
bd_addr_1 = ((p_bd_addr[0] & 0xF0)>>4);
bd_addr_0 = (p_bd_addr[0] & 0xF);
/* Convert hex value into ascii */
if(bd_addr_1 > 0x09)
{
p_adv_data[i + ad_length - 1] = bd_addr_1 + '7';
}
else
{
p_adv_data[i + ad_length - 1] = bd_addr_1 + '0';
}
if(bd_addr_0 > 0x09)
{
p_adv_data[i + ad_length] = bd_addr_0 + '7';
}
else
{
p_adv_data[i + ad_length] = bd_addr_0 + '0';
}
}
break;
}
case AD_TYPE_MANUFACTURER_SPECIFIC_DATA:
{
p_adv_data[i+2] = ST_MANUF_ID_LSB;
p_adv_data[i+3] = ST_MANUF_ID_MSB;
p_adv_data[i+4] = BLUESTSDK_V2; /* blueST SDK version */
p_adv_data[i+5] = BOARD_ID_NUCLEO_WB0; /* Board ID */
p_adv_data[i+6] = FW_ID_P2P_SERVER; /* FW ID */
p_adv_data[i+7] = 0x00; /* FW data 1 */
p_adv_data[i+8] = 0x00; /* FW data 2 */
p_adv_data[i+9] = 0x00; /* FW data 3 */
p_adv_data[i+10] = p_bd_addr[5]; /* MSB BD address */
p_adv_data[i+11] = p_bd_addr[4];
p_adv_data[i+12] = p_bd_addr[3];
p_adv_data[i+13] = p_bd_addr[2];
p_adv_data[i+14] = p_bd_addr[1];
p_adv_data[i+15] = p_bd_addr[0]; /* LSB BD address */
break;
}
default:
break;
}
i += ad_length + 1; /* increment the iterator to go on next element*/
}
}
/* USER CODE END FD_LOCAL_FUNCTION */
/* USER CODE BEGIN FD_WRAP_FUNCTIONS */
#if (CFG_BUTTON_SUPPORTED == 1)
void APPE_Button1Action(void)
{
if (bleAppContext.Device_Connection_Status == APP_BLE_IDLE)
{
/* Relaunch advertising */
APP_BLE_Procedure_Gap_Peripheral(PROC_GAP_PERIPH_ADVERTISE_START_FAST);
HAL_RADIO_TIMER_StartVirtualTimer(&bleAppContext.Advertising_mgr_timer_Id, ADV_TIMEOUT_MS);
}
else if (bleAppContext.Device_Connection_Status == APP_BLE_CONNECTED_SERVER)
{
UTIL_SEQ_SetTask( 1<<CFG_TASK_SEND_NOTIF_ID, CFG_SEQ_PRIO_0);
}
return;
}
void APPE_Button2Action(void)
{
tBleStatus ret = BLE_STATUS_INVALID_PARAMS;
if (bleAppContext.Device_Connection_Status != APP_BLE_CONNECTED_SERVER)
{
ret = aci_gap_clear_security_db();
if (ret != BLE_STATUS_SUCCESS)
{
APP_DBG_MSG("==>> aci_gap_clear_security_db - Fail, result: 0x%02X\n", ret);
}
else
{
APP_DBG_MSG("==>> aci_gap_clear_security_db - Success\n");
}
}
else
{
/* Launch advertising for multi connection */
APP_BLE_Procedure_Gap_Peripheral(PROC_GAP_PERIPH_ADVERTISE_START_FAST);
HAL_RADIO_TIMER_StartVirtualTimer(&bleAppContext.Advertising_mgr_timer_Id, ADV_TIMEOUT_MS);
}
return;
}
void APPE_Button3Action(void)
{
if (bleAppContext.Device_Connection_Status != APP_BLE_CONNECTED_SERVER)
{
}
else
{
APP_BLE_Procedure_Gap_Peripheral(PROC_GAP_PERIPH_CONN_PARAM_UPDATE);
}
return;
}
#endif /* (CFG_BUTTON_SUPPORTED == 1) */
/* USER CODE END FD_WRAP_FUNCTIONS */
- p2p_server.c:
/* USER CODE BEGIN Service1_Char_1_ACI_GATT_ATTRIBUTE_MODIFIED_VSEVT_CODE */
APP_DBG_MSG("-- GATT : LED CONFIGURATION RECEIVED\n");
notification.DataTransfered.Length = p_attribute_modified->Attr_Data_Length;
notification.DataTransfered.p_Payload = p_attribute_modified->Attr_Data;
/* USER CODE END Service1_Char_1_ACI_GATT_ATTRIBUTE_MODIFIED_VSEVT_CODE */
/* USER CODE BEGIN BLECORE_EVT */
/* Manage ACI_GATT_INDICATION_VSEVT_CODE occurring on Android 12 */
case ACI_GATT_CLT_INDICATION_VSEVT_CODE:
{
tBleStatus status = BLE_STATUS_FAILED;
aci_gatt_clt_indication_event_rp0 *pr = (void*)p_evt->data;
status = aci_gatt_clt_confirm_indication(pr->Connection_Handle, BLE_GATT_UNENHANCED_ATT_L2CAP_CID);
if (status != BLE_STATUS_SUCCESS)
{
APP_DBG_MSG(" Fail : aci_gatt_confirm_indication command, result: 0x%x \n", status);
}
else
{
APP_DBG_MSG(" Success: aci_gatt_confirm_indication command\n");
}
}
break; /* end ACI_GATT_NOTIFICATION_VSEVT_CODE */
/* USER CODE END BLECORE_EVT */
default:
/* USER CODE BEGIN EVT_DEFAULT */
- p2p_server_app.c:
/* USER CODE BEGIN PTD */
typedef struct{
uint8_t Device_Led_Selection;
uint8_t Led1;
}P2P_LedCharValue_t;
typedef struct{
uint8_t Device_Button_Selection;
uint8_t ButtonStatus;
}P2P_ButtonCharValue_t;
/* USER CODE END PTD */
/* USER CODE BEGIN Service1_APP_Context_t */
P2P_LedCharValue_t LedControl;
P2P_ButtonCharValue_t ButtonControl;
/* USER CODE END Service1_APP_Context_t */
/* USER CODE BEGIN PFP */
static void P2P_SERVER_APP_LED_BUTTON_context_Init(void);
/* USER CODE END PFP */
/* USER CODE BEGIN Service1Char1_WRITE_NO_RESP_EVT */
if(p_Notification->DataTransfered.p_Payload[1] == 0x01)
{
BSP_LED_On(LED_BLUE);
APP_DBG_MSG("-- P2P APPLICATION SERVER : LED1 ON\n");
P2P_SERVER_APP_Context.LedControl.Led1 = 0x01; /* LED1 ON */
}
if(p_Notification->DataTransfered.p_Payload[1] == 0x00)
{
BSP_LED_Off(LED_BLUE);
APP_DBG_MSG("-- P2P APPLICATION SERVER : LED1 OFF\n");
P2P_SERVER_APP_Context.LedControl.Led1 = 0x00; /* LED1 OFF */
}
/* USER CODE END Service1Char1_WRITE_NO_RESP_EVT */
/* USER CODE BEGIN Service1Char2_NOTIFY_ENABLED_EVT */
P2P_SERVER_APP_Context.Switch_c_Notification_Status = Switch_c_NOTIFICATION_ON;
APP_DBG_MSG("-- P2P APPLICATION SERVER : NOTIFICATION ENABLED\n");
APP_DBG_MSG(" \n\r");
/* USER CODE END Service1Char2_NOTIFY_ENABLED_EVT */
/* USER CODE BEGIN Service1Char2_NOTIFY_DISABLED_EVT */
P2P_SERVER_APP_Context.Switch_c_Notification_Status = Switch_c_NOTIFICATION_OFF;
APP_DBG_MSG("-- P2P APPLICATION SERVER : NOTIFICATION DISABLED\n");
APP_DBG_MSG(" \n\r");
/* USER CODE END Service1Char2_NOTIFY_DISABLED_EVT */
/* USER CODE BEGIN Service1_APP_DISCON_HANDLE_EVT */
P2P_SERVER_APP_LED_BUTTON_context_Init();
/* USER CODE END Service1_APP_DISCON_HANDLE_EVT */
/* USER CODE BEGIN Service1_APP_Init */
UTIL_SEQ_RegTask( 1U << CFG_TASK_SEND_NOTIF_ID, UTIL_SEQ_RFU, P2P_SERVER_Switch_c_SendNotification);
/**
* Initialize LedButton Service
*/
P2P_SERVER_APP_Context.Switch_c_Notification_Status= Switch_c_NOTIFICATION_OFF;
P2P_SERVER_APP_LED_BUTTON_context_Init();
/* USER CODE END Service1_APP_Init */
/* USER CODE BEGIN FD */
void P2P_SERVER_APP_LED_BUTTON_context_Init(void)
{
BSP_LED_Off(LED_BLUE);
P2P_SERVER_APP_Context.LedControl.Device_Led_Selection=0x01; /* Device1 */
P2P_SERVER_APP_Context.LedControl.Led1=0x00; /* led OFF */
P2P_SERVER_APP_Context.ButtonControl.Device_Button_Selection=0x01;/* Device1 */
P2P_SERVER_APP_Context.ButtonControl.ButtonStatus=0x00;
return;
}
/* USER CODE END FD */
/* USER CODE BEGIN Service1Char2_NS_1*/
if(P2P_SERVER_APP_Context.ButtonControl.ButtonStatus == 0x00)
{
P2P_SERVER_APP_Context.ButtonControl.ButtonStatus = 0x01;
}
else
{
P2P_SERVER_APP_Context.ButtonControl.ButtonStatus = 0x00;
}
a_P2P_SERVER_UpdateCharData[0] = 0x01; /* Device Led selection */
a_P2P_SERVER_UpdateCharData[1] = P2P_SERVER_APP_Context.ButtonControl.ButtonStatus;
/* Update notification data length */
p2p_server_notification_data.Length = (p2p_server_notification_data.Length) + 2;
if(P2P_SERVER_APP_Context.Switch_c_Notification_Status == Switch_c_NOTIFICATION_ON)
{
APP_DBG_MSG("-- P2P APPLICATION SERVER : INFORM CLIENT BUTTON 1 PUSHED\n");
notification_on_off = Switch_c_NOTIFICATION_ON;
}
else
{
APP_DBG_MSG("-- P2P APPLICATION SERVER : CAN'T INFORM CLIENT - NOTIFICATION DISABLED\n");
}
/* USER CODE END Service1Char2_NS_1*/
10. Inserting external files
To complete the creation of our P2P server project, we add the following external BSP files:
- stm32wb0x_nucleo.c
- stm32wb0x_nucleo.h
- stm32wb0x_nucleo_conf.h
These files provide a set of firmware functions to manage the LEDs and push-buttons available on the STM32WB0x Nucleo board.
Add the stm32wb0x_nucleo.c and stm32wb0x_nucleo.h files to your project folder (STM32Cube_FW_WB0_Vx.y.z\Drivers\BSP\STM32WB0x_Nucleo) and respectively in the folders BLE_p2pServer\Core\Src and BLE_p2pServer\Core\Core\Inc.
Then rename the stm32wb0x_nucleo_conf_template.h file to stm32wb0x_nucleo_conf.h.
Now, add stm32wb0x_nucleo_conf.h to your project folder (BLE_p2pServer\Core\Inc).
To add external code files, we recommend using the .extSettings file. For more details, refer to the section 6.4 of the STM32CubeMX user manual[6].
The .extsettings file allows you to add additional settings, which can be used when external tools call STM32CubeMX to generate the project and require specific project settings.
Your .extSettings file contains the following:
[ProjectFiles]
HeaderPath=../../../../../../Drivers/BSP/STM32WB0x-nucleo;
[Others]
Define=NUCLEO_WB09KE
[Groups]
Doc=../README.md;
Drivers/BSP/NUCLEO-WB09KE=../../../../../../Drivers/BSP/STM32WB0x-nucleo/stm32wb0x_nucleo.c;
The path in HeaderPath indicates where the stm32wb0x_nucleo.h file is stored in your project. In Groups, you need to specify where you want the code file to appear in your workspace, and where it is stored.
After this, you can click Generate again in STM32CubeMX.
Your workspace now looks like this:
You have just finished creating a p2pServer application with STM32CubeMX starting from the STM32WB09KEV6TR chip.
You can find more information about peer-to-peer applications on related ReadMe file available under the BLE_p2pServer folder.
11. References