Last edited 8 months ago

TZC internal peripheral: Difference between revisions


Latest revision as of 14:39, 25 July 2024


1. Article purpose

The purpose of this article is to:

  • briefly introduce the TZC peripheral and its main features,
  • indicate the peripheral instances assignment at boot time and their assignment at runtime (including whether instances can be allocated to secure contexts),
  • list the software frameworks and drivers managing the peripheral,
  • explain how to configure the peripheral.

2. Peripheral overview

The TZC peripheral is used to filter read/write accesses to the DDR controller according to TrustZone access rights, and according to Non-Secure master Address ID (NSAID) on up to 9 programmable regions.

Refer to the STM32 MPU reference manuals for the complete list of features, and to the software frameworks and drivers, introduced below, to see which features are implemented.

3. Peripheral usage

This chapter is applicable in the scope of the OpenSTLinux BSP running on the Arm® Cortex®-A processor(s), and the STM32CubeMPU Package running on the Arm® Cortex®-M processor.

3.1. Boot time assignment

3.1.1. On STM32MP1 series

The TZC is configured at boot time to setup DDR accesses. It is initially configured thanks to TF-A FW Configuration. OP-TEE redefined the TZC regions based on device tree.

Click on How to.png to expand or collapse the legend...

Domain Peripheral Boot time allocation Comment How to.png
Instance Cortex-A7
secure
(ROM code)
Cortex-A7
secure
(TF-A BL2)
Cortex-A7
non-secure
(U-Boot)
Security TZC TZC

3.2. Runtime assignment

3.2.1. On STM32MP13x lines More info.png

Click on How to.png to expand or collapse the legend...

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Security TZC TZC

3.2.2. On STM32MP15x lines More info.png

Click on How to.png to expand or collapse the legend...

Domain Peripheral Runtime allocation Comment How to.png
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Cortex-M4

(STM32Cube)
Security TZC TZC

4. Software frameworks and drivers

Below are listed the software frameworks and drivers managing the TZC peripheral for the embedded software components listed in the above tables.

5. How to assign and configure the peripheral

The peripheral assignment can be done via the STM32CubeMX graphical tool (and manually completed if needed).
This tool also helps to configure the peripheral:

  • partial device trees (pin control and clock tree) generation for the OpenSTLinux software components,
  • HAL initialization code generation for the STM32CubeMPU Package.

The configuration is applied by the firmware running in the context in which the peripheral is assigned.

See also additional information in the OP-TEE overview article.

6. How to go further

The TZC is an Arm® peripheral: TZC-400 TrustZone Address Space Controller[1]

7. References