1. Article purpose[edit source]
This article provides simple examples for the Developer Package of the OpenSTLinux distribution, that illustrate cross-compilation with the SDK:
- modification of software elements delivered as source code (for example the Linux kernel)
- addition of software (for example the Linux kernel module or user-space applications)
These examples also show how to deploy the results of the cross-compilation on the target, through a network connection to the host machine.
2. Prerequisites[edit source]
The prerequisites from the Cross-compile with OpenSTLinux SDK article must be executed, and the cross-compilation and deployment of any piece of software, as explained in that article, is known.
The board and the host machine are connected through an Ethernet link, and a remote terminal program is started on the host machine: see How to get Terminal.
The target is started, and its IP address (<board ip address>) is known.
3. Modifying the Linux kernel configuration[edit source]
3.1. Preamble[edit source]
The Linux kernel configuration option that you want to modify might be used by external out-of-tree Linux kernel modules (for example the GPU kernel driver), and these should then be recompiled. These modules are, by definition, outside the kernel tree structure, and are not delivered in the Developer Package source code; it is not possible to recompile them with the Developer Package. Consequently, if the Linux kernel is reconfigured and recompiled with this option then deployed on the board, the external out-of-tree Linux kernel modules might no longer be loaded.
There are two possible situations:
- This is not a problem for the use cases on which you are currently working. In this case you can use the Developer Package to modify and recompile the Linux kernel.
- This is a problem for the use cases on which you are currently working. In this case you need to switch on the STM32MP1 Distribution Package, and after having modified the Linux kernel configuration, use it to rebuild the whole image (that is, not only the Linux kernel but also the external out-of-tree Linux kernel modules).
Example:
- Let's assume that the FUNCTION_TRACER and FUNCTION_GRAPH_TRACER options are activated to install the ftrace Linux kernel feature
- This feature is used to add tracers in the whole kernel, including the external out-of-tree Linux kernel modules
- The Developer Package is used to reconfigure and recompile the Linux kernel, and to deploy it on the board
- The external out-of-tree Linux kernel modules are not recompiled. This is the case for the GPU kernel driver
- Consequently, the Linux kernel fails to load the GPU kernel driver module. However, even if the display no longer works, the Linux kernel boot succeeds, and the setup is sufficient, for example, to debug use cases involving an Ethernet or USB connection
- The Distribution Package is used to reconfigure the Linux kernel, and to rebuild and deploy the whole image on the board
- The external out-of-tree Linux kernel modules are recompiled, including the GPU kernel driver
- Consequently, the Linux kernel succeeds in loading the GPU kernel driver module. The display is available.
3.2. Simple example[edit source]
This simple example modifies the value defined for the contiguous memory area (CMA) size.
- Get the current value of the CMA size (128 Mbytes here) through the analysis of the target boot log
dmesg | grep -i cma
STM32MP157C-EV1
[ 0.000000] cma: Reserved 128 MiB at 0xe8000000
STM32MP157C-DK2
[ 0.000000] cma: Reserved 128 MiB at 0xd2000000
- Go to the <Linux kernel build directory>
cd <Linux kernel build directory>
- Start the Linux kernel configuration menu: see Menuconfig or how to configure kernel
- Navigate to "Device Drivers - Generic Driver Options"
- select "Size in Megabytes"
- modify its value to 256
- exit and save the new configuration
- Check that the configuration file (.config) has been modified
grep -i CONFIG_CMA_SIZE_MBYTES .config CONFIG_CMA_SIZE_MBYTES=256
- Cross-compile the Linux kernel: see Menuconfig or how to configure kernel
- Update the Linux kernel image on board: see Menuconfig or how to configure kernel
- Reboot the board: see Menuconfig or how to configure kernel
- Get the new value of the CMA size (256 Mbytes) through the analysis of the target boot log
dmesg | grep -i cma
STM32MP157C-EV1
[ 0.000000] cma: Reserved 256 MiB at 0xd8000000
STM32MP157C-DK2
[ 0.000000] cma: Reserved 256 MiB at 0xc2000000
4. Modifying the Linux kernel device tree[edit source]
This simple example modifies the default status of a user LED.
- With the board started; check that the user green LED (LD3 for STM32MP157C-EV1, LD5 for STM32MP157C-DK2) is disabled
- Go to the <Linux kernel source directory>
cd <Linux kernel source directory>
STM32P157C-EV1
- Edit the arch/arm/boot/dts/stm32mp15xx-edx.dtsi device tree source file
- Add the lines highlighted below
led { compatible = "gpio-leds"; blue { label = "heartbeat"; gpios = <&gpiod 9 GPIO_ACTIVE_HIGH>; linux,default-trigger = "heartbeat"; default-state = "off"; }; green { label = "stm32mp:green:user"; gpios = <&gpioa 14 GPIO_ACTIVE_LOW>; default-state = "on"; }; };
STM32MP157C-DK2
- Edit the arch/arm/boot/dts/stm32mp15xx-dkx.dtsi device tree source file
- Add the lines highlighted below
led { compatible = "gpio-leds"; blue { label = "heartbeat"; gpios = <&gpiod 11 GPIO_ACTIVE_HIGH>; linux,default-trigger = "heartbeat"; default-state = "off"; }; green { label = "stm32mp:green:user"; gpios = <&gpioa 14 GPIO_ACTIVE_LOW>; default-state = "on"; }; };
- Go to the <Linux kernel build directory>
cd <Linux kernel build directory>
- Generate the device tree blobs (*.dtb)
make dtbs cp arch/arm/boot/dts/stm32mp157*.dtb install_artifact/boot/
- Update the device tree blobs on the board
scp install_artifact/boot/stm32mp157*.dtb root@<board ip address>:/boot/
- Reboot the board
reboot
- Check that the user green LED (LD3 for STM32MP157C-EV1, LD5 for STM32MP157C-DK2) is enabled (green)
5. Modifying a built-in Linux kernel device driver[edit source]
This simple example adds unconditional log information when the display driver is probed.
- Check that there's no log information when the display driver is probed
dmesg | grep -i stm_drm_platform_probe
- Go to the <Linux kernel source directory>
cd <Linux kernel source directory>
- Edit the ./drivers/gpu/drm/stm/drv.c source file
- Add a log information in the stm_drm_platform_probe function
static int stm_drm_platform_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct drm_device *ddev;
int ret;
[...]
DRM_INFO("Simple example - %s\n", __func__);
return 0;
[...]
}
- Go to the <Linux kernel build directory>
cd <Linux kernel build directory>
- Cross-compile the Linux kernel (please check the load address in the README.HOW_TO.txt helper file)
make uImage LOADADDR=0xC2000040 cp arch/arm/boot/uImage install_artifact/boot/
- Update the Linux kernel image on board
scp install_artifact/boot/uImage root@<board ip address>:/boot/
- Reboot the board
reboot
- Check that there is now log information when the display driver is probed
dmesg | grep -i stm_drm_platform_probe
[ 2.995125] [drm] Simple example - stm_drm_platform_probe
6. Modifying/adding an external Linux kernel module[edit source]
Most device drivers (modules) in the Linux kernel can be compiled either into the kernel itself (built-in/internal module) or as Loadable Kernel Modules (LKM/external module) that need to be placed in the root file system under the /lib/modules directory. An external module can be in-tree (in the kernel tree structure), or out-of-tree (outside the kernel tree structure).
6.1. Modifying an external in-tree Linux kernel module[edit source]
This simple example adds an unconditional log information when the virtual video test driver (vivid) kernel module is probed or removed.
- Go to the <Linux kernel source directory>
cd <Linux kernel source directory>
- Edit the ./drivers/media/platform/vivid/vivid-core.c source file
- Add log information in the vivid_probe and vivid_remove functions
static int vivid_probe(struct platform_device *pdev)
{
const struct font_desc *font = find_font("VGA8x16");
int ret = 0, i;
[...]
/* n_devs will reflect the actual number of allocated devices */
n_devs = i;
pr_info("Simple example - %s\n", __func__);
return ret;
}
static int vivid_remove(struct platform_device *pdev)
{
struct vivid_dev *dev;
unsigned int i, j;
[...]
pr_info("Simple example - %s\n", __func__);
return 0;
}
- Go to the <Linux kernel build directory>
cd <Linux kernel build directory>
- Cross-compile the Linux kernel modules
make modules make INSTALL_MOD_PATH="./install_artifact" modules_install
- Remove the link on "install_artifact/lib/modules/<kernel version>/"
rm install_artifact/lib/modules/<kernel version>/build rm install_artifact/lib/modules/<kernel version>/source
- Optionally, strip kernel modules (to reduce the size of each kernel modules)
find . -name "*.ko" | xargs $STRIP --strip-debug --remove-section=.comment --remove-section=.note --preserve-dates
- Update the vivid kernel module on the board (please check the kernel version <kernel version>)
scp install_artifact/lib/modules/<kernel version>/kernel/drivers/media/platform/vivid/vivid.ko root@<board ip address>:/lib/modules/<kernel version>/kernel/drivers/media/platform/vivid/
OR
scp -r install_artifact/lib/modules/* root@<board ip address>:/lib/modules/
- Update dependency descriptions for loadable kernel modules, and synchronize the data on disk with memory
/sbin/depmod -a sync
- Insert the vivid kernel module into the Linux kernel
modprobe vivid
[...]
[ 3412.784638] Simple example - vivid_probe
- Remove the vivid kernel module from the Linux kernel
rmmod vivid
[...]
[ 3423.708517] Simple example - vivid_remove
6.2. Adding an external out-of-tree Linux kernel module[edit source]
This simple example adds a "Hello World" external out-of-tree Linux kernel module to the Linux kernel.
- Prerequisite: the Linux source code is installed, and the Linux kernel has been cross-compiled
- Go to the working directory that contains all the source code (that is, the directory that contains the Linux kernel, U-Boot and TF-A source code directories)
cd <tag>/sources/arm-<distro>-linux-gnueabi
- Export to KERNEL_SRC_PATH the path to the Linux kernel build directory that contains both the Linux kernel source code and the configuration file (.config)
export KERNEL_SRC_PATH=$PWD/<Linux kernel build directory>/
- Example:
- export KERNEL_SRC_PATH=$PWD/linux-stm32mp-5.4.31/build
- Create a directory for this kernel module example
mkdir kernel_module_example cd kernel_module_example
- Create the source code file for this kernel module example: kernel_module_example.c
// SPDX-identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics SA 2018
*
* Authors: Jean-Christophe Trotin <jean-christophe.trotin@st.com>
*
*/
#include <linux/module.h> /* for all kernel modules */
#include <linux/kernel.h> /* for KERN_INFO */
#include <linux/init.h> /* for __init and __exit macros */
static int __init kernel_module_example_init(void)
{
printk(KERN_INFO "Kernel module example: hello world from STMicroelectronics\n");
return 0;
}
static void __exit kernel_module_example_exit(void)
{
printk(KERN_INFO "Kernel module example: goodbye from STMicroelectronics\n");
}
module_init(kernel_module_example_init);
module_exit(kernel_module_example_exit);
MODULE_DESCRIPTION("STMicroelectronics simple external out-of-tree Linux kernel module example");
MODULE_AUTHOR("Jean-Christophe Trotin <jean-christophe.trotin@st.com>");
MODULE_LICENSE("GPL v2");
- Create the makefile for this kernel module example: Makefile
# Makefile for simple external out-of-tree Linux kernel module example # Object file(s) to be built obj-m := kernel_module_example.o # Path to the directory that contains the Linux kernel source code # and the configuration file (.config) KERNEL_DIR ?= $(KERNEL_SRC_PATH) # Path to the directory that contains the generated objects DESTDIR ?= $(KERNEL_DIR)/install_artifact # Path to the directory that contains the source file(s) to compile PWD := $(shell pwd) default: $(MAKE) -C $(KERNEL_DIR) M=$(PWD) modules install: $(MAKE) -C $(KERNEL_DIR) M=$(PWD) INSTALL_MOD_PATH=$(DESTDIR) modules_install clean: $(MAKE) -C $(KERNEL_DIR) M=$(PWD) clean
- Cross-compile the kernel module example
make clean make make install
- Go to the <Linux kernel build directory>
cd <Linux kernel build directory>
- The generated kernel module example is in: install_artifact/lib/modules/<kernel version>/extra/kernel_module_example.ko
- Remove the link on "install_artifact/lib/modules/<kernel version>/"
rm install_artifact/lib/modules/<kernel version>/build rm install_artifact/lib/modules/<kernel version>/source
- Optionally, strip kernel modules (to reduce the size of each kernel modules)
find . -name "*.ko" | xargs $STRIP --strip-debug --remove-section=.comment --remove-section=.note --preserve-dates
- Push this kernel module example on board (please check the kernel version <kernel version>)
ssh root@<board ip address> mkdir -p /lib/modules/<kernel version>/extra scp install_artifact/lib/modules/<kernel version>/extra/kernel_module_example.ko root@<board ip address>:/lib/modules/<kernel version>/extra
OR
scp -r install_artifact/lib/modules/* root@<board ip address>:/lib/modules/
- Update dependency descriptions for loadable kernel modules, and synchronize the data on disk with memory
/sbin/depmod -a sync
- Insert the kernel module example into the Linux kernel
modprobe kernel_module_example
[18167.821725] Kernel module example: hello world from STMicroelectronics
- Remove the kernel module example from the Linux kernel
rmmod kernel_module_example
[18180.086722] Kernel module example: goodbye from STMicroelectronics
7. Modifying the U-Boot[edit source]
This simple example adds unconditional log information when U-Boot starts. Within the scope of the trusted boot chain, U-Boot is used as second stage boot loader (SSBL).
- Have a look at the U-Boot log information when the board reboots
reboot
STM32MP157C-EV1
[...] U-Boot 2020.01-stm32mp-r1 (Jan 06 2020 - 20:56:31 +0000) CPU: STM32MP157CAA Rev.B Model: STMicroelectronics STM32MP157C eval daughter on eval mother Board: stm32mp1 in trusted mode (st,stm32mp157c-ev1) [...]
STM32MP157C-DK2
[...] U-Boot 2020.01-stm32mp-r1 (Jan 06 2020 - 20:56:31 +0000) CPU: STM32MP157CAC Rev.B Model: STMicroelectronics STM32MP157C-DK2 Discovery Board Board: stm32mp1 in trusted mode (st,stm32mp157c-dk2) [...]
- Go to the <U-Boot source directory>
cd <U-Boot source directory>
Example: cd u-boot-stm32mp-2020.01-r0/u-boot-stm32mp-2020.01
- Edit the ./board/st/stm32mp1/stm32mp1.c source file
- Add a log information in the checkboard function
int checkboard(void)
{
int ret;
char *mode;
[...]
puts("\n");
printf("U-Boot simple example\n");
[...]
return 0; }
- Get the list of supported configurations with the following command
make -f $PWD/../Makefile.sdk help
- Cross-compile the U-Boot: trusted boot for STM32MP157C-EV1 and STM32MP157C-DK2
make -f $PWD/../Makefile.sdk all UBOOT_CONFIGS=stm32mp15_trusted_defconfig,trusted,u-boot.stm32
- Go to the directory in which the compilation results are stored
cd build-trusted/
- Reboot the board, and hit any key to stop in the U-boot shell
reboot [...] Hit any key to stop autoboot: 0 STM32MP>
- Connect a USB cable between the host machine and the board via the USB OTG ports
- In the U-Boot shell, call the USB mass storage function
STM32MP> ums 0 mmc 0
- On the host machine, check the partition associated with the secondary stage boot loader (ssbl): sdc3 here
ls -l /dev/disk/by-partlabel/
total 0
lrwxrwxrwx 1 root root 10 Feb 8 08:57 bootfs -> ../../sdb4
lrwxrwxrwx 1 root root 10 Feb 8 08:57 fsbl1 -> ../../sdb1
lrwxrwxrwx 1 root root 10 Feb 8 08:57 fsbl2 -> ../../sdb2
lrwxrwxrwx 1 root root 10 Feb 8 08:57 rootfs -> ../../sdb6
lrwxrwxrwx 1 root root 10 Feb 8 08:57 ssbl -> ../../sdb3
lrwxrwxrwx 1 root root 10 Feb 8 08:57 userfs -> ../../sdb7
lrwxrwxrwx 1 root root 10 Feb 8 08:57 vendorfs -> ../../sdb5
- Copy the U-Boot binary to the dedicated partition
STM32MP157C-EV1
dd if=u-boot-stm32mp157c-ev1-trusted.stm32 of=/dev/sdb3 bs=1M conv=fdatasync
STM32MP157C-DK2
dd if=u-boot-stm32mp157c-dk2-trusted.stm32 of=/dev/sdb3 bs=1M conv=fdatasync
- Reset the U-Boot shell
STM32MP> reset
- Have a look at the new U-Boot log information when the board reboots
STM32MP157C-EV1
[...] U-Boot 2020.01-stm32mp-r1 (Jan 06 2020 - 20:56:31 +0000) CPU: STM32MP157CAA Rev.B Model: STMicroelectronics STM32MP157C eval daughter on eval mother Board: stm32mp1 in trusted mode (st,stm32mp157c-ev1) U-Boot simple example [...]
STM32MP157C-DK2
[...] U-Boot 2020.01-stm32mp-r1 (Jan 06 2020 - 20:56:31 +0000) CPU: STM32MP157CAC Rev.B Model: STMicroelectronics STM32MP157C-DK2 Discovery Board Board: stm32mp1 in trusted mode (st,stm32mp157c-dk2) U-Boot simple example [...]
8. Modifying the TF-A[edit source]
This simple example adds unconditional log information when the TF-A starts. Within the scope of the trusted boot chain, TF-A is used as first stage boot loader (FSBL).
- Have a look at the TF-A log information when the board reboots
reboot [...] INFO: System reset generated by MPU (MPSYSRST) INFO: PMIC version = 0x10 INFO: Using SDMMC [...]
- Go to the <TF-A source directory>
cd <TF-A source directory>
Example: cd tf-a-stm32mp-2.2-r1-r0/tf-a-stm32mp-2.2.r1
- Edit the ./plat/st/stm32mp1/bl2_plat_setup.c source file
- Add a log information in the print_reset_reason function
static void print_reset_reason(void)
{
[...]
INFO("Reset reason (0x%x):\n", rstsr);
INFO("TF-A simple example\n");
[...]
}
- Get the list of supported configurations with the following command
make -f $PWD/../Makefile.sdk help
- Cross-compile the TF-A: trusted boot for STM32MP157C-EV1 and STM32MP157C-DK2
make -f $PWD/../Makefile.sdk all TF_A_CONFIG=trusted
- Go to the directory in which the compilation results are stored
cd ../build/trusted
- Reboot the board, and hit any key to stop in the U-boot shell
reboot [...] Hit any key to stop autoboot: 0 STM32MP>
- Connect a USB cable between the host machine and the board via the USB OTG ports
- In the U-Boot shell, call the USB mass storage function
STM32MP> ums 0 mmc 0
- On the host machine, check the partition associated with the first stage boot loader (fsbl1 and fsbl2 as backup): sdb1 and sdb2 (as backup) here
ls -l /dev/disk/by-partlabel/ total 0 lrwxrwxrwx 1 root root 10 Feb 8 10:01 bootfs -> ../../sdb4 lrwxrwxrwx 1 root root 10 Feb 8 10:01 fsbl1 -> ../../sdb1 lrwxrwxrwx 1 root root 10 Feb 8 10:01 fsbl2 -> ../../sdb2 lrwxrwxrwx 1 root root 10 Feb 8 10:01 rootfs -> ../../sdb6 lrwxrwxrwx 1 root root 10 Feb 8 10:01 ssbl -> ../../sdb3 lrwxrwxrwx 1 root root 10 Feb 8 10:01 userfs -> ../../sdb7 lrwxrwxrwx 1 root root 10 Feb 8 10:01 vendorfs -> ../../sdb5
- Copy the TF-A binary to the dedicated partition; to test the new TF-A binary, it might be useful to keep the old TF-A binary in the backup FSBL (fsbl2)
STM32MP157C-EV1
dd if=tf-a-stm32mp157c-ev1-trusted.stm32 of=/dev/sdb1 bs=1M conv=fdatasync
STM32MP157C-DK2
dd if=tf-a-stm32mp157c-dk2-trusted.stm32 of=/dev/sdb1 bs=1M conv=fdatasync
- Reset the U-Boot shell
In the U-Boot shell, press Ctrl+C prior to get hand back.
STM32MP> reset
- Have a look at the new TF-A log information when the board reboots
[...] INFO: System reset generated by MPU (MPSYSRST) INFO: TF-A simple example INFO: PMIC version = 0x10 INFO: Using SDMMC [...]
9. Adding a "hello world" user space example[edit source]
Thanks to the OpenSTLinux SDK, it is easy to develop a project outside of the OpenEmbedded build system. This chapter shows how to compile and execute a simple "hello world" example.
9.1. Source code file[edit source]
- Go to the working directory that contains all the source codes (i.e. directory that contains the Linux kernel, U-Boot and TF-A source code directories)
cd <tag>/sources/arm-<distro>-linux-gnueabi
- Create a directory for this user space example
mkdir hello_world_example cd hello_world_example
- Create the source code file for this user space example: hello_world_example.c
// SPDX-identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2018 * * Authors: Jean-Christophe Trotin <jean-christophe.trotin@st.com> * */ #include <stdio.h> #include <unistd.h> int main(int argc, char **argv) { int i =11; printf("\nUser space example: hello world from STMicroelectronics\n"); setbuf(stdout,NULL); while (i--) { printf("%i ", i); sleep(1); } printf("\nUser space example: goodbye from STMicroelectronics\n"); return(0); }
9.2. Cross-compilation[edit source]
Three ways to use the OpenSTLinux SDK to cross-compile this user space example are proposed below: (1) command line (2) makefile-based project (3) autotools-based project.
9.2.1. Command line[edit source]
This method allows quick cross-compilation of a single-source code file. It applies if the project has only one file.
The cross-development toolchain is associated with the sysroot that contains the header files and libraries needed for generating binaries that run on the target architecture (see SDK for OpenSTLinux distribution#Native and target sysroots).
The sysroot location is specified with the --sysroot option.
The sysroot location must be specified using the --sysroot option. The CC environment variable created by the SDK already includes the --sysroot option that points to the SDK sysroot location.
echo $CC arm-ostl-linux-gnueabi-gcc -march=armv7ve -mthumb -mfpu=neon-vfpv4 -mfloat-abi=hard -mcpu=cortex-a7 --sysroot=<SDK installation directory>/SDK/sysroots/cortexa7t2hf-neon-vfpv4-ostl-linux-gnueabi
- Create the directory in which the generated binary is to be stored
mkdir -p install_artifact install_artifact/usr install_artifact/usr/local install_artifact/usr/local/bin
- Cross-compile the single source code file for the user space example
$CC hello_world_example.c -o ./install_artifact/usr/local/bin/hello_world_example
9.2.2. Makefile-based project[edit source]
For this method, the cross-toolchain environment variables established by running the cross-toolchain environment setup script are subject to general make rules.
For example, see the following environment variables:
echo $CC arm-ostl-linux-gnueabi-gcc -march=armv7ve -mthumb -mfpu=neon-vfpv4 -mfloat-abi=hard -mcpu=cortex-a7 --sysroot=<SDK installation directory>/SDK/sysroots/cortexa7t2hf-neon-vfpv4-ostl-linux-gnueabi echo $CFLAGS -O2 -pipe -g -feliminate-unused-debug-types echo $LDFLAGS -Wl,-O1 -Wl,--hash-style=gnu -Wl,--as-needed echo $LD arm-ostl-linux-gnueabi-ld --sysroot=<SDK installation directory>/SDK/sysroots/cortexa7t2hf-neon-vfpv4-ostl-linux-gnueabi
- Create the makefile for this user space example: Makefile
PROG = hello_world_example SRCS = hello_world_example.c OBJS = $(SRCS:.c=.o) CLEANFILES = $(PROG) INSTALL_DIR = ./install_artifact/usr/local/bin # Add / change option in CFLAGS if needed # CFLAGS += <new option> $(PROG): $(OBJS) $(CC) $(CFLAGS) -o $(PROG) $(OBJS) .c.o: $(CC) $(CFLAGS) -c $< -o $@ all: $(PROG) clean: rm -f $(CLEANFILES) $(patsubst %.c,%.o, $(SRCS)) *~ install: $(PROG) mkdir -p $(INSTALL_DIR) install $(PROG) $(INSTALL_DIR)
- Cross-compile the project
make make install
9.2.3. Autotools-based project[edit source]
This method creates a project based on GNU autotools.
- Create the makefile for this user space example: Makefile.am
bin_PROGRAMS = hello_world_example hello_world_example_SOURCES = hello_world_example.c
- Create the configuration file for this user space example: configure.ac
AC_INIT(hello_world_example,0.1) AM_INIT_AUTOMAKE([foreign]) AC_PROG_CC AC_PROG_INSTALL AC_OUTPUT(Makefile)
- Generate the local aclocal.m4 files and create the configure script
aclocal autoconf
- Generate the files needed by GNU coding standards (for compliance)
touch NEWS README AUTHORS ChangeLog
- Generate the links towards SDK scripts
automake -a
- Cross-compile the project
./configure ${CONFIGURE_FLAGS} make make install DESTDIR=./install_artifact
9.3. Deploy and execute on board[edit source]
- Check that the generated binary for this user space example is in: ./install_artifact/usr/local/bin/hello_world_example
- Push this binary onto the board
scp -r install_artifact/* root@<board ip address>:/
- Execute this user space example
cd /usr/local/bin ./hello_world_example User space example: hello world from STMicroelectronics 10 9 8 7 6 5 4 3 2 1 0 User space example: goodbye from STMicroelectronics
10. Tips[edit source]
10.1. Creating a mounting point[edit source]
The objective is to create a mounting point for the boot file system (bootfs partition)
- Find the partition label associated with the boot file system
ls -l /dev/disk/by-partlabel/
total 0
lrwxrwxrwx 1 root root 15 Jan 23 17:00 bootfs -> ../../mmcblk0p4
lrwxrwxrwx 1 root root 15 Jan 23 17:00 fsbl1 -> ../../mmcblk0p1
lrwxrwxrwx 1 root root 15 Jan 23 17:00 fsbl2 -> ../../mmcblk0p2
lrwxrwxrwx 1 root root 15 Jan 23 17:00 rootfs -> ../../mmcblk0p6
lrwxrwxrwx 1 root root 15 Jan 23 17:00 ssbl -> ../../mmcblk0p3
lrwxrwxrwx 1 root root 15 Jan 23 17:00 userfs -> ../../mmcblk0p7
lrwxrwxrwx 1 root root 15 Jan 23 17:00 vendorfs -> ../../mmcblk0p5
- Attach the boot file system found under /dev/mmcblk0p4 in the directory /boot
mount /dev/mmcblk0p4 /boot