STGEN internal peripheral

Revision as of 14:42, 30 January 2023 by Registered User

Applicable for STM32MP13x lines, STM32MP15x lines

1 Article purpose[edit]

The purpose of this article is to:

  • briefly introduce the STGEN peripheral and its main features
  • indicate the level of security supported by this hardware block
  • explain how it can be allocated to the runtime contexts and linked to the corresponding software components
  • explain, when necessary, how to configure the STGEN peripheral.

2 Peripheral overview[edit]

The STGEN peripheral provides the reference clock used by the Arm® Cortex®-A7 generic timer for its counters, including the system tick generation.

It is clocked by ACLK (the AXI bus clock), so caution is needed when this clock is changed; otherwise the operating system (running on the Cortex-A7) might run with a varying reference clock.

2.1 Features[edit]

Refer to the STM32MP13 reference manuals or STM32MP15 reference manuals for the complete list of features, and to the software components, introduced below, to see which features are implemented.

2.2 Security support[edit]

The STGEN is a single-instance peripheral that can be accessed via the two following register sets:

  • STGENC for the control. That is, a secure port (under ETZPC control).
  • STGENR for the read-only access. That is, a non secure port.

3 Peripheral usage and associated software[edit]

3.1 Boot time[edit]

The STGEN is first initialized by the ROM code, then updated by the FSBL (see Boot chain overview) once the clock tree is set up.

3.2 Runtime[edit]

3.2.1 Overview[edit]

Linux® and OP-TEE use the Arm Cortex-A7 generic timer that gets its counter from the STGEN, but this is transparent at run time.

Hence there is no runtime allocation decision for this peripheral: both contexts are selected by default.

3.2.2 Software frameworks[edit]

3.2.2.1 On STM32MP13x lines More info.png[edit]
Domain Peripheral Software components Comment
OP-TEE Linux
Core STGEN see comment see comment Not applicable as the STGEN peripheral is configured at boot time and not accessed at runtime
3.2.2.2 On STM32MP15x lines More info.png[edit]
Domain Peripheral Software components Comment
OP-TEE Linux STM32Cube
Core STGEN see comment see comment Not applicable as the STGEN peripheral is configured at boot time and not accessed at runtime

3.2.3 Peripheral configuration[edit]

3.2.4 Peripheral assignment[edit]

3.2.4.1 On STM32MP13x lines More info.png[edit]

Click on the right to expand the legend...

STM32MP13IPsOverview.png

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned () to the given runtime context.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are statically connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possiblities might be described in STM32MP13 reference manuals.

Domain Peripheral Runtime allocation Comment
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Core STGEN STGEN
3.2.4.2 On STM32MP15x lines More info.png[edit]

Click on the right to expand the legend...

STM32MP15 internal peripherals

Check boxes illustrate the possible peripheral allocations supported by STM32 MPU Embedded Software:

  • means that the peripheral can be assigned () to the given runtime context.
  • means that the peripheral can be assigned to the given runtime context, but this configuration is not supported in STM32 MPU Embedded Software distribution.
  • is used for system peripherals that cannot be unchecked because they are statically connected in the device.

Refer to How to assign an internal peripheral to an execution context for more information on how to assign peripherals manually or via STM32CubeMX.
The present chapter describes STMicroelectronics recommendations or choice of implementation. Additional possiblities might be described in STM32MP15 reference manuals.

Domain Peripheral Runtime allocation Comment
Instance Cortex-A7
secure
(OP-TEE)
Cortex-A7
non-secure
(Linux)
Cortex-M4

(STM32Cube)
Core STGEN STGEN

4 References[edit]